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Abstract— We study the boundary layer flows induced by 
the axisymmetric stretching of a sheets are studied using more 
suggestive schemes. The equation of motion of a axisymmetric 
flow over a stretching sheet and the sheet is stretched with a 
velocity is proportional to the distance from the vertical axis. 
The governing nonlinear differential equations are reduced to 
nonlinear linear ordinary differential equations (ODEs) by using 
similarity transformations. The resulting nonlinear ODEs are 
solved by using fast convergent Dirichlet series method and an 
approximate analytical method by Method of stretching of 
variables. These methods have advantages over pure 
numerical methods for obtaining the derived quantities 
accurately for various values of the parameters involved at a 
stretch and these are valid in much larger domain as 
compared with the classical numerical schemes. 
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I. INTRODUCTION
In this discussion, we consider boundary layer 

flow over axisymmetric stretching of a sheet which are of 
significant interest in the recent years due to their 
applications. The third order nonlinear ordinary 
differential equation over an infinite interval with 
parameter M, Hartman number (magnetic field) is of 
special interest and in very few specific cases they have 
analytical solutions. The flow of a viscoelastic fluid over 
a stretching sheet was investigated by Rajagopal et al. 
[1], Sarpkaya [2] who probably the first to consider the 
MHD flow of non-Newtonian fluids. Andersson [3] and 
Mamaloukas et al. [4] have obtained similarity solution of 
the boundary layer equation governing the flow of a 
viscoelastic and a second grade fluid past a stretching 
sheet in the presence of an external magnetic field. The 
fluid occupies the space above the sheet and the motion 

is caused by stretching sheet in opposite directions with 
the velocity is proportional to the distance from the fixed 
axis studied by Crane [5], and also he has given an 
elegant solution of the problem . The more interesting 
fact is that the problem still admits an exact analytical 
solution. The other effects are taken into account, such 
as suction at the sheet was discussed by (Gupta and 
Gupta [6]), viscoelasticity of the fluid by Ariel [7,8], 
partial slip at the boundary by Wang [9]. The problem of 
flow due to the radial stretching of the sheet (i. e the 
velocity of the sheet is proportional to the distance from 
a vertical rather than a horizontal axis) does not have an 
exact solution. For this reason, this problem has 
received much less attention in the literature. Wang [10], 
discussed the numerical solution of the flow due to the 
radial stretching of the sheet. The effects of visco-
elasticity were studied by Ariel for an elastico-viscous 
fluid [11] and the second grade fluid by [12]. Areal [13], 
discussed the axisymmetric flow due to stretching of a 
sheet in hydromagnetics as the prototype problem for 
the non-iterative algorithm and also develops an 
algorithm for solving the problems of the flow induced by 
the moving boundaries in hydromagnetics. Hayat et 
al.[14] has used modified decomposition method and 
Pade’ approximants,  for the solution of equation third 
order nonlinear ODE with infinite interval arsing in MHD. 
Shahzad et al [15], investigated the exact solution for 
axisymmetric flow and heat transfer over nonlinearly 
radially stretching sheet by HAM. Recently, Khan and 
Shahzad [16] have analysed the axisymmetric flow of 
sisko fluid over a radially stretching sheet using HAM.         

The present investigation is to analyze the 
boundary layer flow induced by axisymmetric stretching 
of a sheet given by Mirgolbabaei et al [17]. The solution 
of the resulting third order nonlinear boundary value 
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problem with infinite interval is obtained by Dirichlet 
series method and approximation method. We seek 
solution of the general equation of the type 

�
�f A f f B f C f′′′ ′′ ′ ′+ + + =                                         (1) 

with the boundary conditions  

( ) ( ) ( )� �
� �� � ��� �f f fα β′ ′= = ∞ = )                          (2) 

 where A, B and C are constants and prime denotes 
derivative with respect to the independent variable η . 
This equation admits a Dirichlet series solution; 
necessary conditions for the existence and uniqueness 
of these solutions may also be found in [18, 19]. For a 
specific type of boundary condition i.e. ( ) �f ′ ∞ = , the 
Dirichlet series solution is particularly useful for 
obtaining the derived quantities. A general discussion of 
the convergence of the Dirichlet series may also be 
found in Riesz [20]. The accuracy as well as uniqueness 
of the solution can be confirmed using other powerful 
semi-numerical schemes. Sachdev et al. [21] have 
analyzed various problems from fluid dynamics of 
stretching sheet using this approach and found more 
accurate solution compared with earlier numerical 
findings. Recently, Awati et al [22, 23] and Kudenatii et 
al [24] have analysed the problems from MHD boundary 
layer flow with nonlinear stretching sheet using the 
above methods and found more accurate results 
compared with the classical numerical methods. 
Dirichlet series solution and MSV which we present here 
is more attractive than adapted variational iteration 
method (AVIM) discussed by Mirgolbabaei et al [17].

The present work is structured as follows. In 
section 2  the mathematical formulation of the proposed 
problem with relevant boundary conditions is given. 
Section 3 is devoted to semi-numerical method for the 
solution of the problem using Dirichlet series. In section 
4 the solution of the proposed problem by an 
approximate analytical method using the method of 
stretching of variables (MSV). In section 5 detailed 
results obtained by the novel method explained here are 
compared with the corresponding numerical schemes. 
Section 6 Conclusions. 

II. MATHEMATICAL FORMULATION OF THE PROBLEM
Consider the equation of motion of electrically 

conducting, viscous incompressible fluid caused by 
radial stretching sheet at z=0 in the presence of 
transverse magnetic field. The stretching velocity of the 
sheet is proportional to the distance from the origin of 
the sheet. In the cylindrical polar coordinates � � � �r zθ
and the flow takes place in the upper half plane �z > . 
In view of the rotational symmetry of the flow all physical 
quantities are independent of θ i.e �θ∂ ∂ ≡ . The 
equation of motion for steady, laminar, axisymmetric 
flow and continuity are of the form (Mirgolbabaei et al 
[17]) 

� �

�

� � �

�
�

u u p
u w

r z r

Bu u u u
u

r rr z r

ρ

σ
µ

ρ

∂ ∂ ∂ + = − + ∂ ∂ ∂ 
 ∂ ∂ ∂

+ + − − ∂∂ ∂ 

 (3)

� �

� �

�
�

w w p

u w

r z r

w w w

r rr z

ρ

µ

∂ ∂ ∂ + = − ∂ ∂ ∂ 
 ∂ ∂ ∂

+ + + ∂∂ ∂ 

 (4) 

� �
u u w

r r z

∂ ∂
+ + =

∂ ∂          (5)  

where  is fluid density, µ is coefficient of viscosity, σ is 
the electrical conductivity of the fluid, p is the pressure 
and ( )���u w  are the velocity components along 
( )� �r zθ directions. The boundary conditions for the 
above flow situations are 

� ��� � ������ �

� �����

u c r w z

u z

= = = 
→ → ∞ 

  (6)  

where c > 0 is the constant of proportionality relating to 
the stretching of the sheet. The boundary layer Eq. (3)-
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.(6) admit the similarity solution (Wang [9]),                                 

( ) ( )��� � ���� � �u crf w c f c zη υ η η υ′= =− =
 (7) 

where υ µ ρ=  is the kinematic viscosity of the fluid 
and prime denotes differentiation with respect to  η , 
eventually reduce the Navier-Stokes equation to an 
ODE. From Eq. (3), we get 

� �
�

p
c r f f f f M f

r

ρ∂ ′′′ ′′ ′ ′ = + − − ∂    (8) 

where �
M B cσ ρ=  is the magnetic parameter. On the 

other hand Eq. (4), gives 

� �
p

c f f c fµ µ
η

∂ ′ ′′= − −
∂                  (9) 

which when integrated with respect to η  yields, 

( )�
� � �p c f c f g rµ µ ′=− − +             (10) 

where g(r)  is an arbitrary function of r. Substitute for p 
Eq. (10) into Eq. (8), we obtain 

( ) �

�
�

g r
f f f f M f

c rρ
′

′′′ ′′ ′ ′= + − −
  
    (11) 

Since in Eq. (11), the left hand side is a function of  r 
only, and the right hand side is a function of η only, in 
order for it to be consistent, each side must be constant, 
say A1. Hence we have  

( ) �

�
g r c r Aρ′ =                (12) 

Its integration with respect to r, gives 

( ) ( ) � �

� �
���g r p c r Aρ= +

     (13) 

where 
�
p  is a constant. Substitution of g(r) from Eq.(13) 

into Eq.(10) leads to  

( ) � � �

� �
��� � �p p c r A c f c fρ µ µ ′= + − −  (14) 

Since the entire motion of the fluid is caused due to 
stretching of the sheet, the pressure far away from the 
sheet must be given by the Bernoulli’s equation, i.e., 
Matching of the pressure from Eq. (14), gives A1=0. 
Hence from equation (11), we get the following DE for f  
(Mirgolbabaei et al [17]) 

�
� �f f f f M f′′′ ′′ ′ ′+ − − =         (15) 

Also the pressure p at any point in terms of the physical 
variables is  

�

�

�

�

w

p p w

z

ρ µ ∂
= − +

∂          (16) 

The boundary conditions of the problem are 

( ) ( ) ( )� ����� � ����� �f f f′ ′= = ∞ =     (17) 

III. DIRICHLET SERIES APPROACH TO THE 
BOUNDARY VALUE PROBLEMS OVER AN 

INFINITE INTERVAL 
We seek a Dirichlet series solution of equation (1) 
satisfying the last boundary condition of Eq.(2) 
automatically i.e ( ) �=∞′f in the form of (Kravchenko 
and Yablonskii [18, 19]) 

�

�

�
� �

i i

i

i

f b a e

A

γηγγ
∞

−

=

= + ∑    (18) 

where γ  and a are parameters. Substituting (18) into 
(1), we get  
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{ }

( ){ }

� � �

�

�

� �

�

� �

�
� �

i iy

i

i

i

i i y

k i k

i k

i A i C i b a e

A k B k i k b b a e

A

η

η

γ γγ

γ

∞
−

=

∞ −
−

−
= =

− + −

+ + − =

∑

∑∑
  (19)                   

For i=1, we have 
�

�

C

A

γγ +
=          (20) 

Substituting (20) into (19) the recurrence relation for 
obtaining coefficients is given by 

( ){ } { }
� �

�

�

�

�
� �

�

i

i k i k

k

b A k B k i k b b

A i i i C

γ
γ

−

−
=

= + −
− − ∑   (21) 

For i = 2, 3, ..... . If the series (18) converges absolutely 
when �γ >  for some 

�
η , this series converges 

absolutely and uniformly in the half plane 
�

�� ��η η≥ and represents an analytic 
( )� iπ γ periodic function ( )�f f η= such that 

( ) �=∞′f (Kravchenko & Yablonskii [19]). The series 
(18) contains two free parameters namely a andγ . 
These unknown parameters are determined from the 
remaining boundary conditions (2) at �η =

( )
�

�

�

�
� � �

i

i

i

C
f b a

A A

γ γ α
γ

∞

=

+
= + =∑     (22) 

and   ( ) ( )
�

�

�

�
�

i

i

i

f i b a

A

γ β
∞

=

′ = − =∑     (23) 

The solution of these transcendental equations (22) and 
(23) yield, constants a and γ . The solution of these 
transcendental equations is equivalent to the 
unconstrained minimization of the functional   

( )
� �

� �

� �

� �

� �
� � �

i i

i i

i i

C

b a i b a

A A A

γ γ γα β
γ

∞ ∞

= =

   +
+ − + − −   

   
∑ ∑  (24) 

We use Powell’s method of conjugate directions (Press 
et al [25]) which is one of the most efficient techniques 
for solving unconstrained optimization problems. This 

helps in finding the unknown constants a and γ
uniquely for different values of the parameters A, B, 
C,

�
α and

�
β . Alternatively, Newton’s method is also 

used to determine the unknown parameters a andγ
accurately. The shear stress at the surface of the 
problem is given by 

( ) ( )�
�

�
� �

i

i

i

f b a i

A

γ γ
∞

=

′′ = ∑       (25) 

The velocity profiles of the problem is given by 

( )
�

�

�
� � � i i

i

i

f i b a e

A

γ ηγη
∞

−

=

′ = −∑    (26) 

IV. METHOD OF STRETCHING OF VARIABLES 
Many nonlinear ODE arising in MHD problems 

are not amenable for obtaining analytical solutions. In 
such situations, attempts have been made to develop 
approximate methods for the solution of these problems. 
The numerical approach is always based on the idea of 
stretching of variables of the flow problems. Method of 
stretching of variables is used here for the solution of 
such problems. In this method, we have to choose 
suitable derivative function H ′  such that the derivative 
boundary conditions are satisfied automatically and 
integration of H ′  will satisfy the remaining boundary 
condition. Substitution of this resulting function into the 
given equation gives the residual of the form 

( )�R ξ α which is called defect function. Using Least 
squares method, the residual of the defect function can 
be minimized. For details see (Ariel, [26]). Using the 
transformation Fff

w

+=  into Eq. (1), we get 

( ) �
��

w

F A f F F B F C F′′′ ′′ ′ ′+ + + + = 27) 

and the boundary conditions  (2) become 

( ) ( ) ( )� ����� � ������ �F F F′ ′= = ∞ =  (28) 

We introduce two variables ξ  and Gin the form 
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� � � �G Fξ α η= andξ αη=          (29) 

whereα >0, is an amplification factor. In view of Eq.(29), 
the system (27-28) are transformed to the form  

( )� �
���

w

G A f G G BG CGα α′′′ ′′ ′ ′+ + + + =  (30)  

and the boundary conditions in Eq. (28) become 

��� ����� ��� ������ � � �G ′ ′= = ∞ =   (31) 

We choose a trail velocity profile 

���� �G ξ′ = −                                        (32) 

which automatically satisfies the derivative conditions in 
Eq.(31). Integrating Eq. (32) with respect toξ  from 0 to 
ξ  using the first boundary conditions in (31) and then 
substituting this into Eq. (30), we get the residual of the 
defect function 

( )
( )

�� � �

���� � ���� � �

w

R A f A C

A B

ξ α α α

ξ ξ

= − − +

− + + −
 (33) 

By using the least squares method as discussed in Ariel 
[26], the equation (33) can be minimized for which 

( )�

�

� �R dξ α ξ
α

∞∂
=

∂ ∫ .              (34) 

Substituting (33) into equation (34) and solving cubic 
equation inα  for a positive root, we get 

( )� ��
� � � � � �� �

�
w w

A f A B C A fα = ± − − +   

and 
�

w

A fα = .                                
(35) 
Once the amplification factor is calculated, then using 
Eq.(27), original function f can be written as 

( )�
� ���� �

w

f f αη
α

= + − − .     (36) 

with α  defined in Eq. (35). Thus Eq. (36) gives the 
solution of Eq. (1) for all A , B , C and 

w

f . 

V.  RESULT AND DISCUSSION
In the present paper, the axisymmetric flow over 

a stretching of a sheet is discussed by using semi-
numerical method and approximate analytical method. 
The Eq. (15) and (17) are solved semi-numerically using 
one of the powerful techniques due to Dirichlet series 
method and the method of stretching of variables. We 
have given an exact analytical solution of the boundary 
value problem in more general form. In this semi-
numerical method and, it is important to note that the 
edge boundary condition automatically satisfied an also 
we have given analytical solution by approximate 
method.
Case I. Consider the flow of a fluid with no magnetic 
field Eq. (15) reduces to �

� �f f f f′′′ ′′ ′+ − = and the 
boundary conditions are same as of Eq.(17). We check 
the validity of our solution by comparing it with the exact 
solution. The measure of the physical quantity viz. shear 
stress at the sheet is ( )�f ′′− . The exact value 
of ( )�f ′′− is 1.173721 and the value obtained by 
Dirichlet series is 1.173721 and MSV is 1.15470.The 
error being very less as compared to AVIM. 
Case II. In this case, consider the flow of an electrically 
conducting, viscous incompressible fluid over a radially 
stretching sheet in presence of a transverse magnetic 
filed. The governing equation is same as Eq. (15) and 
M is the Hartmann number. As the value of M

increased, Hartmann layers start in at �η = causing the 
great difficulties in obtaining the numerical solution. We 
have presented much better solution than AVIM by 
using Dirichlet series and MSV for arbitrary values of M 
which are comparable with exact numerical solutions by 
Ariel [26] which are listed in Table 1. The above said 
methods are capable for providing  the solutions in the 
presence of Hartmann layers near the stretching sheet.  
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Case III. The massive transfer of the fluid across the 
boundary, the type of the boundary layer is manifested 
near the boundary. The semi-numerical and 
approximation method are able to handle the suction 
boundary layer in an efficient manner with Hartmann 
layer. The  suction takes place across the sheet, the 
boundary conditions (17) changes to 

( ) ( ) ( )� �� � ��� �
w

f f f f′ ′= = ∞ = , where 
w

f  is the suction 
parameter given by ( ) ( )�

�
w

f w cρ µ=  , where 
�
w is the suction velocity. The governing equation for f is 
same as Eq. (15). The values of ( )�f ′′−  are presented 
for various a vales of 

w

f using Dirichlet series method 
and MSV are given in Table 2. and these values are 
comparable with numerical solution given by Ackroyd 
[27]. 

Case IV. In this case, we consider the flow of an 
electrically conducting viscous incompressible fluid due 
to radial stretching of a sheet in the presence of the 
transverse magnetic field and also the suction at the 
sheet. The governing equation is same as Eq. (15) and 
relevant boundary conditions ( ) ( ) ( )� �� � ��� �

w

f f f f′ ′= = ∞ = . 
Numerical computations are performed by using the 
above said methods for various values of the physical 
parameters involved in the equation viz., Hortmann 
number M, and mass suction parameter

w

f . The present 
solutions are then validated by comparing it with the 
previously published work of Migolbabaei et al [17] as 
shown in the Tables 3.         

Table1. Comparison of Dirichlet series method,  Method of stretching of variables (MSV) with exact 
solution and Adapted variational Iteration method (AVIM) for the flow in the presence of magnetic field. 

M 
Dirichlet Series Method Exact 

( )�f ′′−

MSV 
( )�f ′′−

AVIM 
( )�f ′′−a

γ ( )�f ′′−

0 -0.56719 1.50299 1.17372 1.17372 1.15470 1.182125 
0.01 -0.18857 1.50659 1.17606 1.17783 1.15902 1.192910 
0.04 -0.18627 1.51758 1.17902 1.17901 1.17189 1.209962 
0.25 -0.16798 1.57558 1.25906 1.27303 1.25831 1.298851 
1.0 -0.12258 1.77491 1.53417 1.53571 1.52752 1.556834 
4.0 -0.05861 2.46267 2.31048 2.31172 2.30940 2.322880 

25.0 -0.01249 5.19738 5.13178 5.13181 5.13160 5.151863 
100 -0.00328 10.09967 10.06632 10.06647 10.06645 10.087672
500 -0.00066 22.40537 22.39211 --- 22.39047
1000 -0.00033 31.65439 31.64398 --- 31.64385

Table 2.Comparison of Dirichlet series method,  Method of stretching of variables (MSV) with exact 
solution and Adapted variational Iteration method (AVIM) for the flow in the presence of magnetic field. 
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A 
Dirichlet Series Method Exact 

( )�f ′′−

MSV 
( )�f ′′−

AVIM 
( )�f ′′−a

γ ( )�f ′′−

0 -0.56719 1.50299 1.17372 1.17372 1.15470 1.182125
0.1 -0.16335 1.59707 1.27865 1.28242 1.25902 1.329105
0.2 -0.14159 1.69558 1.41216 1.40236 1.37189 1.488416
0.5 -0.09085 2.04339 1.79567 1.79867 1.75931 2.057265

Table 3. Comparison of Dirichlet series method, Method of stretching of variables(MSV) with exact 
solutionand Adapted variational Iteration method (AVIM)  for MHD flow with sucion. 

M A 
Dirichlet Series Method Exact 

( )�f ′′−

MSV 
( )�f ′′−

AVIM 
( )�f ′′−a

γ ( )�f ′′−

1 

0 -0.12258 1.77491 1.53417 1.53571 1.52753 1.556834
0.1 -0.10843 1.87345 1.64267 1.64312 1.63079 1.683059
0.2 -0.09608 1.97844 1.75491 1.75664 1.74056 1.821750
0.5 -0.06724 2.32755 2.13048 2.13194 2.10728 2.328433

4 

0 -0.05861 2.46267 2.31049 2.31172 2.30940 2.322880
0.1 -0.05386 2.56390 2.41458 2.41586 2.41156 2.444133
0.2 -0.04948 2.66927 2.52468 2.52422 2.51804 2.576313
0.5 -0.03855 3.00932 2.87325 2.87403 2.86291 3.051377

25 

0 -0.01249 5.19738 5.13178 5.13181 5.13160 5.15186
0.1 -0.01202 5.29831 5.23308 5.23319 5.23258 5.289863
0.2 -0.01156 5.40116 5.33646 5.33653 5.33549 5.435615
0.5 -0.01029 5.72122 5.65798 5.65812 5.65590 5.92565
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VI. CONCLUSIONS
In this article, we describe the analysis of boundary 

value problem for third order nonlinear ODEs over an 
infinite interval arising in axisymmetric flow over a 
stretching sheet. The semi-numerical and an 
approximate analytical scheme described here offer 
some advantages over solutions by HAM, HPM, 
Adomain decomposition methods and AVIM etc. The 
convergence of the Dirichlet series methods is given. 
The results are presented in Tables.    
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